World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

OPTIMAL DIRECTED CURRENT OF A BROWNIAN MOTOR UNDER A NON-GAUSSIAN NOISE GENERATED BY A MULTIPLICATIVE PROCESS

    https://doi.org/10.1142/S0129183110015452Cited by:1 (Source: Crossref)

    Unidirectional motion is achieved when a particle, moving under the influence of an underlying noise source, is subjected to a ratchet asymmetric periodic potential. Here, we investigate how deviations from the Gaussian nature of the noise distribution function impacts the average particle's current. The input noise is considered to be produced by a Langevin process including both multiplicative and additive random noise sources. The resulting input random signal has a power-law amplitude distribution and a finite correlation time. These features are controlled by the average of the multiplicative noise. We show that the average particle's velocity depends non-monotonically on the degree of non-Gaussianity of the input noise. It exhibits a maximum at an intermediate value of the effective power-law exponent that characterizes the asymptotic decay of the noise probability distribution function.

    PACS: 05.40.-a, 05.60.Cd, 05.10.Gg
    You currently do not have access to the full text article.

    Recommend the journal to your library today!