World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Self-time-delay synchronization of time-delay coupled complex chaotic system and its applications to communication

    https://doi.org/10.1142/S0129183113501027Cited by:18 (Source: Crossref)

    Considering the time lag produced by the transmission in chaos-communication, we present self-time-delay synchronization (STDS) of complex chaotic systems. STDS implies that the synchronization between the time-delay system (the receiver) and the original system (the transmitter) while maintaining the structure and parameters of systems unchanged, thus these various problems produced by time-delay in practice are avoided. It is more suitable to simulate real communication situation. Aimed to time-delay coupled complex chaotic systems, the control law is derived by active control technique. Based on STDS, a novel communication scheme is further designed according to chaotic masking. In simulation, we take time-delay coupled complex Lorenz system transmitting actual speech signal (analog signal) and binary signal as examples. The speech signal contains two components, which are transmitted by the real part and imaginary part of one complex state variable. Two sequences of binary bits are converted into analog signals by 2M-ary and zero-order holder, then added into the real part and imaginary part of one complex state variable. Therefore, the STDS controller is realized by one critical state variable. It is simple in principle and easy to implement in engineering. Moreover, the communication system is robust to noise. It is possible to adopt cheap circuits with time-delay, which is economical and practical for communication.

    PACS: 05.45.Gg, 05.45.Pq
    You currently do not have access to the full text article.

    Recommend the journal to your library today!