World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

First-principles investigations on the elastic and thermodynamic properties of cubic ZrO2 under high pressure

    https://doi.org/10.1142/S0129183115500564Cited by:5 (Source: Crossref)

    We have investigated the elastic and thermodynamic properties of ZrO2 under pressure up to 120 Gpa by the plane wave pseudopotential density functional theory with the generalized gradient approximation (GGA) method. The elastic constants of ZrO2 are calculated and meet the generalized stability criteria, suggesting that ZrO2 is mechanically stable within this pressure range. The pressure effects on the elastic properties reveal that the elastic modulus B, shear modulus G and Young's modulus Y increase linearly with the pressure increasing, implying that the resistance to deformation is enhanced. In addition, by analyzing the Poisson's ratio ν and the value of B/G, we notice that ZrO2 is regarded as being a ductile material under high pressure and the ductility can be improved by the pressure increasing. Then, we employ the quasi-harmonic Debye model considering the phononic effects to obtain the thermodynamic properties of ZrO2. Debye temperature ΘD, thermal expansion coefficient α, heat capacity Cp and Grüneisen parameter γ are systematically explored at pressure of 0–80 Gpa and temperature of 0–1000 K. Our results have provided fundamental facts and evidences for further experimental and theoretical researches.

    PACS: 61.82.Bg, 62.20.dc, 71.20.Be, 71.15.Mb
    You currently do not have access to the full text article.

    Recommend the journal to your library today!