World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The study of genetic information flux network properties in genetic algorithms

    https://doi.org/10.1142/S012918311550076XCited by:2 (Source: Crossref)

    In this paper, an empirical analysis is done on the information flux network (IFN) statistical properties of genetic algorithms (GA) and the results suggest that the node degree distribution of IFN is scale-free when there is at least some selection pressure, and it has two branches as node degree is small. Increasing crossover, decreasing the mutation rate or decreasing the selective pressure will increase the average node degree, thus leading to the decrease of scaling exponent. These studies will be helpful in understanding the combination and distribution of excellent gene segments of the population in GA evolving, and will be useful in devising an efficient GA.

    PACS: 11.25.Hf, 123.1K
    You currently do not have access to the full text article.

    Recommend the journal to your library today!