World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Network immunization under limited budget using graph spectra

    https://doi.org/10.1142/S0129183116500960Cited by:0 (Source: Crossref)

    In this paper, we propose a new algorithm that minimizes the worst expected growth of an epidemic by reducing the size of the largest connected component (LCC) of the underlying contact network. The proposed algorithm is applicable to any level of available resources and, despite the greedy approaches of most immunization strategies, selects nodes simultaneously. In each iteration, the proposed method partitions the LCC into two groups. These are the best candidates for communities in that component, and the available resources are sufficient to separate them. Using Laplacian spectral partitioning, the proposed method performs community detection inference with a time complexity that rivals that of the best previous methods. Experiments show that our method outperforms targeted immunization approaches in both real and synthetic networks.

    PACS: 89.75.Fb, 89.75.Hc, 02.70.Hm
    You currently do not have access to the full text article.

    Recommend the journal to your library today!