World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A variable turbulent Schmidt number formulation by numerical simulation of atmospheric plume dispersion

    https://doi.org/10.1142/S0129183118500353Cited by:0 (Source: Crossref)

    Turbulent Schmidt number as an important parameter in computational fluid dynamic (CFD) simulations is strongly dependent on height, whereas it is mostly considered to be constant in the literature. This paper presents a new variable turbulent Schmidt number formulation which can calculate the relative concentrations (RCs) in neutral atmospheric conditions more accurately. To achieve this aim, RCs from continuous releases are calculated in different distances by the analytical Gaussian plume mode. CFD simulations are carried out for single stack dispersion on a flat terrain surface and an inverse procedure is then applied so that different turbulent Schmidt numbers are used as inputs to determine the RCs to select the “best-fit” turbulent Schmidt number value. This process is continued for different heights to fit a curve to obtain the new formulation for turbulent Schmidt number varying with height. The values are compared with experimental results. The comparison indicates that the new formulation for turbulent Schmidt number is more accurate and reliable than previous research works.

    PACS Nos.: 47., 47.11.–j, 47.27.–E
    You currently do not have access to the full text article.

    Recommend the journal to your library today!