World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Numerical mesoscopic method for transportation of H2O-based nanofluid through a porous channel considering Lorentz forces

    https://doi.org/10.1142/S0129183119500074Cited by:32 (Source: Crossref)

    Recently, various ways are investigated to augment heat transfer in different applications such as porous ceramic domain. Adding nanoparticles to fluid is the best operational way to increase the conduction of fluids. In this paper, migration of nanofluid inside a porous duct under the impact of magnetic force is scrutinized. LBM is applied to present comprehensive parametric analysis for various concentrations of nanofluid, Hartmann, Reynolds, and Darcy numbers. Outputs illustrate that Nu augments with improve of Lorentz forces. Augmenting Da significantly enhances the convective flow in our model.

    PACS: 61.46.+w
    You currently do not have access to the full text article.

    Recommend the journal to your library today!