World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A phase-field-based lattice Boltzmann method for moving contact line problems on curved stationary boundaries in two dimensions

    https://doi.org/10.1142/S012918311950044XCited by:1 (Source: Crossref)

    In this work, we propose a phase-field-based lattice Boltzmann method to simulate moving contact line (MCL) problems on curved boundaries. The key point of this method is to implement the boundary conditions on curved solid boundaries. Specifically, we use our recently proposed single-node scheme for the no-slip boundary condition and a new scheme is constructed to deal with the wetting boundary conditions (WBCs). In particular, three kinds of WBCs are implemented: two wetting conditions derived from the wall free energy and a characteristic MCL model based on geometry considerations. The method is validated with several MCL problems and numerical results show that the proposed method has utility for all the three WBCs on both straight and curved boundaries.

    PACS: 47.11.−j, 47.55.dr
    You currently do not have access to the full text article.

    Recommend the journal to your library today!