Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Delivering capacity allocation strategy for traffic dynamics on scale-free networks

    https://doi.org/10.1142/S0129183120500291Cited by:3 (Source: Crossref)

    The traffic dynamics of complex networks are largely determined by the node’s resource distribution. In this paper, based on the shortest path routing strategy, a node delivering capacity distribution mechanism is proposed into the traffic dynamics in Barabási and Albert (BA) scale-free networks; the efficiency of the mechanism on the network capacity measured by the critical point (Rc) of phase transition from free flow to congestion is primarily explored. Based on the proposed strategy, the total delivering capacity is reallocated according to both degree and betweenness of each node, and an optimal value of parameter αc is found, leading to the maximum traffic capacity. The results of numerical experiments on scale-free networks suggest that the resource allocation strategy proposed here is capable of effectively enhancing the transmission capacity of networks. Furthermore, this study may provide novel insights into research on networked traffic systems.

    PACS: 89.75.Hc, 89.75.Da, 89.20.Hh
    You currently do not have access to the full text article.

    Recommend the journal to your library today!