World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The volatility in financial time series based on granule complex network

    https://doi.org/10.1142/S0129183121501163Cited by:3 (Source: Crossref)

    The volatility is one of the essential characteristics of financial time series, which is vital for the knowledge acquisition from financial data. However, since the high noise and nonsteady features, the volatility identification of financial time series is still a challenging problem. In this paper, from a perspective of granule complex network, a novel approach is proposed to study this problem. First, numeric time series is structured into fuzzy information granules (FIGs), where the segments of time series in each granule would own similar volatility features. Second, by using the transfer relations among granules, granule complex network is to be constructed, which intuitively describes the transfer processes among the different volatility patterns. Third, a novel community detection algorithm is applied to divide the granule complex networks, where granules with frequent mutual transfers would belong to the same granule community. Finally, Markov chain model is carried out to analyze the higher level of transfer processes among different granule communities, which would further describe the larger-scale transitions of volatility in overall financial time series. An empirical study of the proposed system is applied in the Shanghai stock index market, where volatility patterns of financial data can be effectively acquired and the corresponding transfer processes can be analyzed by means of the granule communities.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!