Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

First-principles study of the vacancy defects in ZnIn2Te4 and CdIn2Te4

    https://doi.org/10.1142/S0129183121501667Cited by:1 (Source: Crossref)

    First-principles calculations were carried out to study the stability and electronic properties of native vacancy defects in the semiconducting ZnIn2Te4 (ZIT) and CdIn2Te4 (CIT). The Zn/Cd and In vacancies are acceptor defects, while the Te vacancy is donor defect. However, the In and Te vacancies dominate in the n-type and p-type semiconducting environments, respectively. The Te vacancy is not excited, so it could not compensate the majority of free carriers. The In vacancy prefers to be excited, which generates free hole carriers to compensate the majority of electron carriers. The Zn vacancy is rare in a typical semiconducting environment. Furthermore, all the vacancies induce localized defect states which may be trap centers for the free carriers. Accordingly, these native vacancy defects are destructive for the development of solar cells based on ZIT and CIT, so they should be avoided as much as possible during the growth process.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!