World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Slip flow of hybrid nanofluid in presence of solar radiation

    https://doi.org/10.1142/S0129183122500176Cited by:6 (Source: Crossref)

    A theoretical model on MHD hybrid nanofluid flow in accordance with non-uniform heat flux and solar energy radiation has been studied in our work. Also, the impact of multiple slip conditions is presumed at the boundary. Comparative flow analyses for hybrid nanofluid (Al2O3/Cu–H2O) and single nanoparticle-based nanofluid (Cu–H2O) are addressed here with graphs and charts. The leading partial differential equations with boundary conditions have been converted into ordinary differential equations with the aid of similarity transformation. The final system is tackled via the fifth-order Runge–Kutta–Felberg method with shooting procedure and the computation is done using Maple 17. One of the interesting results shows that with the growth of thermal radiation, the Nusselt number for Cu–H2O is reduced by 26.16%, whereas for the same, Nusselt number for Al2O3/Cu–H2O is lessened by 27.38%. Fallout shows that with the growing values of velocity slip parameter, the thermal boundary layer thickness enlarges faster for Al2O3/Cu–H2O in comparison to Cu–H2O.

    PACS: 44.30.+v, 44.25.+f
    You currently do not have access to the full text article.

    Recommend the journal to your library today!