World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analysis of entropy generation and Joule heating on curvilinear flow of thermally radiative viscous fluid due to an oscillation of curved Riga surface

    https://doi.org/10.1142/S0129183122500875Cited by:8 (Source: Crossref)

    This paper investigates the phenomena of heat transfer and entropy generation on time-dependent electro-magnetohydrodynamic boundary layer flow of viscous fluid past a curved oscillatory stretchable Riga surface. Also, the impacts of thermal radiation and Joule heating are accounted for in the energy equation. To develop the flow model in mathematical form, curvilinear coordinates system is followed. The series solution of the governing nonlinear partial differential equations is attained with the help of the homotopy analysis method (HAM). The impacts of various involved parameters like dimensionless radius of curvature, modified magnetic parameter, the proportion of frequency of oscillation of the sheet to its stretchable rate parameter, magnetic parameter, Prandtl number, Eckert number, radiation parameter and Brinkman number on entropy generation, Bejan number, temperature and flow equations are comprehensively examined and results are displayed through graphs. Numerical variation in the magnitude of surface drag force and local Nusselt number under the influence of aforesaid parameters are presented through the tables. Entropy generation is enhanced with an enhancement in a radius of curvature and Brinkman number, while the Bejan number shows opposite behavior for both parameters. The amplitude of velocity distribution shows growing behavior with modified magnetic parameter.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!