World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A linear mass and energy conserving numerical scheme for two-phase flows with thermocapillary effects

    https://doi.org/10.1142/S0129183124500359Cited by:0 (Source: Crossref)

    In this paper, a thermodynamically consistent phase-field model is employed to simulate the thermocapillary migration of a droplet. The model equations consist of a general Navier–Stokes equation for the two-phase flows, a Cahn–Hilliard equation for the diffuse interface, and a heat equation, and meanwhile satisfy the balance laws of mass, energy and entropy. In particular, the total energy of the system includes kinetic energy, potential energy and internal energy, which leads to a highly coupled and nonlinear equation system. We therefore develop a linear mass and energy conserving, semi-decoupled numerical method for the numerical simulations. As the model contains a heat (energy) equation, a simple error term introduced by the temporal discretization of the momentum equation can be absorbed into the heat equation, such that the numerical solutions satisfy the conservation laws of mass and energy exactly at the temporal discrete level. Several numerical tests are carried out to validate our numerical method.

    PACS: 47.11.-j, 02.60.Cb
    You currently do not have access to the full text article.

    Recommend the journal to your library today!