World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0129183124502425Cited by:0 (Source: Crossref)

Link prediction is a vital aspect of analyzing network evolution and identifying potential connections in complex networks. Previous studies have primarily focused on the information of common neighbors between nodes, often overlooking the inherent attributes of nodes. This study proposes community-based popularity, an attribute of nodes that considers changes in the neighborhood over time in conjunction with the community structure. Based on this attribute, we improve similarity-based link prediction methods. The experiments utilized unweighted directed networks from three distinct types of trade to evaluate the effectiveness of the improved link prediction methods. The training and probe sets were divided in chronological order. The experimental results show that the improved methods provide better link prediction results than the compared methods.

PACS: 89.75.Hc, 89.20.Ff, 89.65.−s
You currently do not have access to the full text article.

Recommend the journal to your library today!