World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EFFECT OF GEOMETRY ON FLUXON WIDTH IN A JOSEPHSON JUNCTION

    https://doi.org/10.1142/S0129183196000181Cited by:20 (Source: Crossref)

    We investigate the electromagnetic influence of the surrounding idle (no tunneling) region on static fluxons in window Josephson junctions. We calculated the fluxon width as a function of the size of the idle region for three different window (active tunneling area) geometries, namely elongated truncated rhombus, rectangular and bow-tie and derived approximate expressions for the case of small and large idle regions. The window geometry affects both the fluxon width and the fluxon stability. One can define an effective λJ which depends on the junction width, the idle region width and the inductance ratio and has important consequences on the static and dynamic properties of window Josephson junctions. We also show the effect of the idle region on the maximum tunneling current as a function of the external magnetic field.

    Part of this work was supported by EEC grant SC1*-CT91-0760, PENED grants 91D479 and 95D2022, and a French–Greek collaboration grant.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!