Microcanonical Optimization Applied to the Traveling Salesman Problem
Abstract
Optimization strategies based on simulated annealing and its variants have been extensively applied to the traveling salesman problem (TSP). Recently, there has appeared a new physics-based metaheuristic, called the microcanonical optimization algorithm (μO), which does not resort to annealing, and which has proven a superior alternative to the annealing procedures in various applications. Here we present the first performance evaluation of μO as applied to the TSP. When compared to three annealing strategies (simulated annealing, microcanonical annealing and Tsallis annealing), and to a tabu search algorithm, the microcanonical optimization has yielded the best overall results for several instances of the euclidean TSP. This confirms μO as a competitive approach for the solution of general combinatorial optimization problems.
You currently do not have access to the full text article. |
---|