World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Microcanonical Optimization Applied to the Traveling Salesman Problem

    https://doi.org/10.1142/S012918319800011XCited by:9 (Source: Crossref)

    Optimization strategies based on simulated annealing and its variants have been extensively applied to the traveling salesman problem (TSP). Recently, there has appeared a new physics-based metaheuristic, called the microcanonical optimization algorithm (μO), which does not resort to annealing, and which has proven a superior alternative to the annealing procedures in various applications. Here we present the first performance evaluation of μO as applied to the TSP. When compared to three annealing strategies (simulated annealing, microcanonical annealing and Tsallis annealing), and to a tabu search algorithm, the microcanonical optimization has yielded the best overall results for several instances of the euclidean TSP. This confirms μO as a competitive approach for the solution of general combinatorial optimization problems.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!