Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Symbolic Computation of Turbulence and Energy Dissipation in the Taylor Vortex Model

    https://doi.org/10.1142/S0129183198000418Cited by:2 (Source: Crossref)

    Using a classic example proposed by G. I. Taylor, we reconsider through the use of computer algebra, the mathematical analysis of a fundamental process in turbulent flow, namely: How do large scale eddies evolve into smaller scale ones to the point where they are effectively absorbed by viscosity? The explicit symbolic series solution of this problem, even for cleverly chosen special cases, requires daunting algebra, and so numerical methods have become quite popular. Yet an algebraic approach can provide substantial insight, especially if it can be pursued with modest human effort.

    The specific example we use dates to 1937 when Taylor and Green8 first published a method for explicitly computing successive approximations to formulas describing the three-dimensional evolution over time of what is now called a Taylor–Green vortex.

    With the aid of a computer algebra system, we have duplicated Taylor and Green's efforts and obtained more detailed time-series results. We have extended their approximation of the energy dissipation from order 5 in time to order 14, including the variation with viscosity.

    Rather than attempting additional interpretation of results for fluid flow (for which, see papers by Brachet et al.,2,3 we examine the promise of computer algebra in pursuing such problems in fluid mechanics.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!