Inverse Chapman–Enskog Derivation of the Thermohydrodynamic Lattice-BGK Model for the Ideal Gas
Abstract
A thermohydrodynamic lattice-BGK model for the ideal gas was derived by Alexander et al. in 1993, and generalized by McNamara et al. in the same year. In these works, particular forms for the equilibrium distribution function and the transport coefficients were posited and shown to work, thereby establishing the sufficiency of the model. In this paper, we rederive the model from a minimal set of assumptions, and thereby show that the forms assumed for the shear and bulk viscosities are also necessary, but that the form assumed for the thermal conductivity is not. We derive the most general form allowable for the thermal conductivity, and the concomitant generalization of the equilibrium distribution. In this way, we show that it is possible to achieve variable (albeit density-dependent) Prandtl number even within a single-relaxation-time lattice-BGK model. We accomplish this by demanding analyticity of the third moments and traces of the fourth moments of the equilibrium distribution function. The method of derivation demonstrates that certain undesirable features of the model — such as the unphysical dependence of the viscosity coefficients on temperature — cannot be corrected within the scope of lattice-BGK models with constant relaxation time.
This paper was presented at the 7th Int. Conf. on the Discrete Simulation of Fluids held at the University of Oxford, 14–18 July 1998.
You currently do not have access to the full text article. |
---|