World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SIMULATION AND MODELING OF EVOKED RESPONSE ELECTROENCEPHALOGRAPH SIGNAL

    https://doi.org/10.1142/S0129183199000589Cited by:0 (Source: Crossref)

    Electroencephalograph (EEG) data for normal individuals with eyes-closed and under stimuli is analyzed. The stimuli consisted of photo, audio, motor and mental activity. We use several measures from nonlinear dynamics to analyze and characterize the data. We find that the dynamics of the EEG signal is deterministic and chaotic but it is not a low dimensional chaotic system. The evoked responses lead to a redistribution of strengths relative to eyes-closed data. Basically, strength in α waves decreases whereas that in β wave increases. We also carried out simulations separately and in combination for δ, θ, α and β waves to understand the data. From the simulation results, it appears that the characteristics of EEG data are consequences of filtering the data with a relatively small range of frequency (0.5–32 Hz). In view of this, we believe that calculation of known nonlinear measures is not likely to be very useful for studying the dynamics of EEG data. We have also successfully modeled the EEG time series using the concept of state space reconstruction in the framework of artificial neural network. It gives us confidence that one would be able to understand, in a more basic way, how collectivity in EEG signal arises.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!