World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FORMAL PROOF OF APPLICATIONS DISTRIBUTED IN SYMMETRIC INTERCONNECTION NETWORKS

    https://doi.org/10.1142/S0129626403001094Cited by:1 (Source: Crossref)

    This paper focuses on the formal proof of parallel programs dedicated to distributed memory symmetric interconnection networks; communications are realized by message passing. We have developed a method to formally verify the computational correctness of this kind of application. Using the notion of Cayley graphs to model the networks in the Nqthm theorem prover, we have formally specified and mechanically proven correct a large set of collective communication primitives. Our compositional approach allows us to reuse these libraries of pre-proven procedures to validate complex application programs within Nqthm. This is illustrated by three examples.