World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BSPGRID: VARIABLE RESOURCES PARALLEL COMPUTATION AND MULTIPROGRAMMED PARALLELISM

    https://doi.org/10.1142/S0129626403001318Cited by:6 (Source: Crossref)

    This paper introduces a new framework for the design of parallel algorithms that may be executed on multiprogrammed architectures with variable resources. These features, in combination with an implied ability to handle fault tolerance, facilitates environments such as the GRID. A new model, BSPGRID is presented, which exploits the bulk synchronous paradigm to allow existing algorithms to be easily adapted and used. It models computation, communication, external memory accesses (I/O) and synchronization. By combining the communication and I/O operations BSPGRID allows the easy design of portable algorithms while permitting them to execute on non-dedicated hardware and/or changing resources, which is typical for machines in a GRID. However, even with this degree of dynamicity, the model still offers a simple and tractable cost model. Each program runs in its own virtual BSPGRID machine. Its emulation on a real computer is demonstrated to show the practicality of the framework. A dense matrix multiplication algorithm and its emulation in a multiprogrammed environment is given as an example.