World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GRID-ENABLED NON-RIGID REGISTRATION OF MEDICAL IMAGES

    https://doi.org/10.1142/S0129626404001830Cited by:3 (Source: Crossref)

    Over recent years, non-rigid registration has become a major issue in medical imaging. It consists in recovering a dense point-to-point correspondence field between two images, and usually takes a long time. This is in contrast to the needs of a clinical environment, where usability and speed are major constraints, leading to the necessity of reducing the computation time from slightly less than an hour to just a few minutes. As financial pressure makes it hard for healthcare organizations to invest in expensive high-performance computing (HPC) solutions, cluster computing proves to be a convenient solution to our computation needs, offering a large processing power at a low cost. Among the fast and efficient non-rigid registration methods, we chose the demons algorithm for its simplicity and good performances. The parallel implementation decomposes the correspondence field into spatial blocks, each block being assigned to a node of the cluster. We obtained an acceleration of 11 by using 15 2GHz PC's connected through a 1GB/s Ethernet network and reduced the computation time from 40min to 3min30. In order to further optimize the costs and the maintenance load, we investigate in the second part the transparent use of shared computing resources, either through a graphic client or a Web one.