World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Rapid Prototyping of the Data-Driven Chip-Multiprocessor (D2-CMP) using FPGAs

    https://doi.org/10.1142/S0129626408003399Cited by:0 (Source: Crossref)

    This paper presents the FPGA implementation of the prototype for the Data-Driven Chip-Multiprocessor (D2-CMP). In particular, we study the implementation of a Thread Synchronization Unit (TSU) on FPGA, a hardware unit that enables thread execution using dataflow-like scheduling policy on a chip multiprocessor. Threads are scheduled for execution based on data availability, i.e., a thread is scheduled for execution only if its input data is available. This model of execution is called the non-blocking Data-Driven Multithreading (DDM) model of execution. The DDM model has been evaluated using an execution driven simulator. To validate the simulation results, a 2-node DDM chip multiprocessor has been implemented on a Xilinx Virtex-II Pro FPGA with two PowerPC processors hardwired on the FPGA. Measurements on the hardware prototype show that the TSU can be implemented with a moderate hardware budget. The 2-node multiprocessor has been implemented with less than half of the reconfigurable hardware available on the Xilinx Virtex-II Pro FPGA (45% slices), which corresponds to an ASIC equivalent gate count of 1.9 million gates. Measurements on the prototype showed that the delays incurred by the operation of the TSU can be tolerated.