World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MPI ON MILLIONS OF CORES

    https://doi.org/10.1142/S0129626411000060Cited by:44 (Source: Crossref)

    Petascale parallel computers with more than a million processing cores are expected to be available in a couple of years. Although MPI is the dominant programming interface today for large-scale systems that at the highest end already have close to 300,000 processors, a challenging question to both researchers and users is whether MPI will scale to processor and core counts in the millions. In this paper, we examine the issue of scalability of MPI to very large systems. We first examine the MPI specification itself and discuss areas with scalability concerns and how they can be overcome. We then investigate issues that an MPI implementation must address in order to be scalable. To illustrate the issues, we ran a number of simple experiments to measure MPI memory consumption at scale up to 131,072 processes, or 80%, of the IBM Blue Gene/P system at Argonne National Laboratory. Based on the results, we identified nonscalable aspects of the MPI implementation and found ways to tune it to reduce its memory footprint. We also briefly discuss issues in application scalability to large process counts and features of MPI that enable the use of other techniques to alleviate scalability limitations in applications.

    This paper is an extended version of a paper titled "MPI on a Million Processors" that was presented at the 16th European PVM/MPI User's Group Meeting 2009 and printed in volume 5759 of Lecture Notes in Computer Science, Springer-Verlag, 2009.