World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HIGH LEVEL SIMULATION OF SVP MANY-CORE SYSTEMS

    https://doi.org/10.1142/S0129626411000308Cited by:8 (Source: Crossref)

    The Microgrid is a many-core architecture comprising multiple clusters of fine-grained multi-threaded cores. The SVP API supported by the cores allows for the asynchronous delegation of work to different clusters of cores which can be acquired dynamically. We want to explore the execution of complex applications and their interaction with dynamically allocated resources. To date, any evaluation of the Microgrid has used a detailed emulation with a cycle accurate simulation of the execution time. Although the emulator can be used to evaluate small program kernels, it only executes at a rate of 100K instructions per second, divided over the number of emulated cores. This makes it inefficient to evaluate a complex application executing on many cores using dynamic allocation of clusters. In order to obtain a more efficient evaluation we have developed a co-simulation environment that executes high level SVP control code but which abstracts the scheduling of the low-level threads using two different techniques. The co-simulation is evaluated for both performance and simulation accuracy.