World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Linear Fractals with Weights

    https://doi.org/10.1142/S012962642340011XCited by:1 (Source: Crossref)
    This article is part of the issue:

    Linear fractals associated with weights are investigated. Such fractals are important from a conservation law perspective that is relevant in a variety of physical systems such as materials science, sand dune fractals, barred galaxies, as well as in temporal processes like in the electroencephalogram (EEG). The weight associated with fractals is an additional feature that may be associated with distributions consistent with the ubiquitous power law and the first digit phenomenon. These distributions form a bridge to processes and applications in natural, biological, and engineering systems and, therefore, open up the possibility of the application of linear weighted fractals to these subjects. Two linear fractal algorithms that are near optimal in the information theoretic sense are described. A mechanism for the emergence of these fractals is proposed: it is the indistinguishability amongst the particles in the evolution and transformation of physical systems. Since the fractal approach is an established method of signal processing and coding, the newly proposed weighted fractals have the potential to lead to new useful algorithms.

    This article is part of the “Special Issue on Novel Computational Approaches to the Universe”, edited by Andrew Schumann and Jerzy Król (University of Information Technology and Management in Rzeszow, Poland).