On Tiling as a Loop Transformation
Abstract
This paper is a follow-up Irigoin and Triolet's earlier work and our recent work on tiling. In this paper, tiling is discussed in terms of its effects on the dependences between tiles, the dependences within a tile and the required dependence test for legality. A necessary and sufficient condition is given for enforcing the data dependences of the program, while Irigion and Triolet's atomic tile constraint is only sufficient. A condition is identified under which both Irigoin and Triolet's and our constraints are equivalent. The results of this paper are discussed in terms of their impact on dependence abstractions suitable for legality test and on tiling to optimise a certain given goal.