World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Antinociceptive Profiles of Platycodin D in the Mouse

    https://doi.org/10.1142/S0192415X04001916Cited by:20 (Source: Crossref)

    Platycodin D (PD), one of several triterpene saponins, was isolated from roots of Platycodon grandiflorum. We previously reported that intracerebroventricular (i.c.v.) administration of PD showed an antinociceptive effect as measured by the tail-flick assay. However, its exact role in the regulation of antinociception in the various types of pain models has not yet been characterized. Thus, we attempted to find antinociceptive profiles of PD in various pain models. PD administered intraperitoneally (i.p.), i.c.v. or intrathecally (i.t.) showed antinociceptive effects in dose-dependent manners as measured by the tail-flick, writhing and formalin tests. In the tail-flick test, PD at the low doses reached the peak after 15 minutes and returned to the control level after 60 minutes. However, higher doses of PD showed a strong antinociception at least for 1 hour. PD administered i.t. showed stronger antinociception than that induced by i.c.v. administration PD in both tail-flick and writhing tests. In the formalin test, PD administered i.p., i.c.v. or i.t. showed antinociceptive effects during both the first (direct nociceptive stimulation) and second (late inflammatory) phases. Pretreatment with naltrexone i.p., i.c.v. or i.t. did not affect PD-induced inhibition of the tail-flick response. Our results suggest that PD shows a strong antinociceptive effect on the tail-flick, writhing and formalin tests, acting on central nervous system. However, PD-induced antinociception may not be mediated by the opioid receptors.