World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Structural Determination and Antioxidant Activity of a Polysaccharide from the Fruiting Bodies of Cultured Cordyceps sinensis

    https://doi.org/10.1142/S0192415X09007387Cited by:48 (Source: Crossref)

    A water-soluble polysaccharide named CPS1 had been isolated from C. sinensis mycelium by hot water extraction, ethanol precipitation, anion-exchange, and gel-permeation chromatography. UV spectra, FTIR spectra, partial acid hydrolysis, PMP precolumn derivation, periodate oxidation and Smith degradation studies were conducted to elucidate its structure. The results indicated that CPS1 was a glucomannogalactan with the monosaccharide composition of glucose: mannose: galactose = 2.8: 2.9: 1. The total carbohydrate content of CPS1 was 99.0%. The weight-average molecular weight was 8.1 × 103Da. The results predicted (1 → 2) and (1 → 4)-linkage of mannose, (1 → 3)-linkage of galactose, (1 → ) and (1 → 3, 6)-linkage of glucose composed the backbone of CPS1. CPS1 was also evaluated for its antioxidant activity in vitro, including scavenging effects on the hydroxyl radicals, the reducing power, Fe2+-chelating activity, scavenging effect on superoxide radicals, as well as the inhibition of hydrogen peroxide induced haemolysis. CPS1 showed a high antioxidant effect, especially scavenging effect of hydroxyl radicals, the reducing power and Fe2+-chelating activity. The results provide scientific support for the antioxidant activity and indicated a connection between antioxidant activity and reparation of renal failure.