World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PI3K/AKT/mTOR Signaling is Involved in (-)-Epigallocatechin-3-Gallate-Induced Apoptosis of Human Pancreatic Carcinoma Cells

    https://doi.org/10.1142/S0192415X13500444Cited by:73 (Source: Crossref)

    PI3K/AKT/mTOR signaling promotes cell survival, proliferation and progression in cancer cells. Targeting this pathway may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of (-)-epigallocatechin-3-gallate (EGCG) on the PI3K/AKT/mTOR pathway in pancreatic cancer cells, and assessed its therapeutic potential. In this study, the proliferation and apoptosis of PANC-1 cells were examined by MTT assay and flow cytometry, respectively. The expression of genes and proteins involved in the PI3K/AKT/mTOR pathway were measured by RT-PCR and western blotting, respectively. Our results revealed that EGCG dramatically inhibited the proliferation of PANC-1 cells and induced apoptosis simultaneously. Furthermore, it upregulated PTEN mRNA and protein expression levels, as well as downregulating the expression of phospho-AKT and phospho-mTOR. In conclusion, these results suggest that EGCG can suppress proliferation and induce apoptosis of PANC-1 cells in a time- and dose-dependent manner; moreover, EGCG also can upregulate PTEN expression and downregulate the expression of pAKT and p-mTOR to modulate the PI3K/AKT/mTOR signaling pathway.