Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

M2C Polarization by Baicalin Enhances Efferocytosis via Upregulation of MERTK Receptor

    https://doi.org/10.1142/S0192415X18500957Cited by:33 (Source: Crossref)

    Baicalin is the main active ingredient primary isolated from the Chinese herb, Scutellaria baicalensis Georgi. Although baicalin can induce M2 macrophage polarization, we still do not know the subtype of macrophages polarized by baicalin. In this study, we characterized that murine bone marrow derived macrophages induced by M-CSF can be further polarized into M2C phenotype by baicalin. The signatures of M2C macrophages for mRNA expression like interferon regulatory factor 4 (IRF4), interleukin-10 (IL-10), MERTK and PTX3 were up-regulated. Moreover, we observed the concomitantly decreasing of tumor necrosis factor alpha (TNF-α), interferon regulatory factor 5 (IRF5), IL-6. In contrast, M2 macrophages polarized by IL-4 increased gene transcript of arginase-1 (Arg-1) and surface marker of CD206 indicates that their identity as M2A rather than M2C subtypes. Interestingly, the phagocytosis as well as efferocytosis activity were significantly enhanced in M2C macrophage polarized by baicalin and these capacities were associated with the expression of MERTK receptor. Finally, we conclude that baicalin induced M2C macrophages polarization with both elevations of efferocytosis and anti-inflammatory activity.