Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Bufalin: A Systematic Review of Research Hotspots and Antitumor Mechanisms by Text Mining and Bioinformatics

    https://doi.org/10.1142/S0192415X20500810Cited by:9 (Source: Crossref)

    Bufalin is an anticancer drug extract from traditional Chinese medicine. Several articles about bufalin have been published. However, the literature on bufalin has not yet been systematically studied. This study aimed to identify the study status and knowledge structures of bufalin and to summarize the antitumor mechanism. Data were retrieved and downloaded from the PubMed database. The softwares of BICOMB, gCLUTO, Ucinet 6.0, and NetDraw2.084 were used to analyze these publications. The bufalin related genes were recognized and tagged by ABNER software. Then these BF-related genes were performed by Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, and protein-protein interaction (PPI) network analysis. A total of 474 papers met the search criteria from 2000 to 2019. By biclustering clustering analysis, the 50 high-frequency main MeSH terms/subheadings were classified into 5 clusters. The clusters of drug therapy and the mechanism of bufalin were hotspot topics. A total of 50 genes were identified as BF-related genes. PPI network analysis showed that inducing apoptosis was the main effect of bufalin, and apoptosis-related gene Caspase 3 was the most reported by people. Bufalin could inhibit the proliferation, invasion, and metastasis of cancer cells through multiple signaling pathways, such as PI3K/AKT, Hedgehog, MAPK/JNK, Wnt/β-catenin, TGF-β/Smad, Integrin signaling pathway, and NF-KB signaling pathway via KEGG analysis. Through the quantitative analysis of bufalin literature, we revealed the research status and hot spots in this field and provided some guidance for further research.