World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SIMULATION-BASED OPTIMIZATION BY NEW STOCHASTIC APPROXIMATION ALGORITHM

    https://doi.org/10.1142/S0217595914500262Cited by:1 (Source: Crossref)

    This paper proposes one new stochastic approximation algorithm for solving simulation-based optimization problems. It employs a weighted combination of two independent current noisy gradient measurements as the iterative direction. It can be regarded as a stochastic approximation algorithm with a special matrix step size. The almost sure convergence and the asymptotic rate of convergence of the new algorithm are established. Our numerical experiments show that it outperforms the classical Robbins–Monro (RM) algorithm and several other existing algorithms for one noisy nonlinear function minimization problem, several unconstrained optimization problems and one typical simulation-based optimization problem, i.e., (s, S)-inventory problem.