World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Evolutionary Sequential Sampling Algorithm for Multi-Objective Optimization

    https://doi.org/10.1142/S0217595916500068Cited by:0 (Source: Crossref)

    In this paper, we present a novel sequential sampling methodology for solving multi-objective optimization problems. Random sequential sampling is performed using the information from within the non-dominated solution set generated by the algorithm, while resampling is performed using the extreme points of the non-dominated solution set. The proposed approach has been benchmarked against well-known multi-objective optimization algorithms that exist in the literature through a series of problem instances. The proposed algorithm has been demonstrated to perform at least as good as the alternatives found in the literature in problems where the Pareto front presents convexity, nonconvexity, or discontinuity; while producing very promising results in problem instances where there is multi-modality or nonuniform distribution of the solutions along the Pareto front.