World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Data Envelopment Analysis with Output-Bounded Data

    https://doi.org/10.1142/S0217595916500500Cited by:3 (Source: Crossref)

    In conventional data envelopment analysis (DEA), data are usually assumed to be non-negative with no specific bounds. However, many practical applications require some data, and thus their projections, to fall within certain limits. For example, percentage data such as the satisfactory rate cannot exceed 100% to make sense. This data characteristic is very likely to be violated under the assumption of constant returns to scale (CRS), due to its ray expansion property. In order to tackle this issue under CRS, a series of radial models are developed to constrain DEA projections within imposed bounds from the output side. Then efficient decision making units (DMUs) can be further discriminated simply by eliminating it from the reference set, avoiding the infeasibility problem existing in the VRS super-efficiency measures. The methodology is demonstrated with data consisting of 119 general acute care hospitals located in Pennsylvania, USA.