Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Variance-Based Modified Backward-Forward Algorithm with Line Search for Stochastic Variational Inequality Problems and Its Applications

    https://doi.org/10.1142/S0217595920500116Cited by:10 (Source: Crossref)

    We propose a variance-based modified backward-forward algorithm with a stochastic approximation version of Armijo’s line search, which is robust with respect to an unknown Lipschitz constant, for solving a class of stochastic variational inequality problems. A salient feature of the proposed algorithm is to compute only one projection and two independent queries of a stochastic oracle at each iteration. We analyze the proposed algorithm for its asymptotic convergence, sublinear convergence rate in terms of the mean natural residual function, and optimal oracle complexity under moderate conditions. We also discuss the linear convergence rate with finite computational budget for the proposed algorithm without strong monotonicity. Preliminary numerical experiments indicate that the proposed algorithm is competitive with some existing algorithms. Furthermore, we consider an application in dealing with an equilibrium problem in stochastic natural gas trading market.