Single-Machine Due-Window Assignment Scheduling with Resource Allocation and Generalized Earliness/Tardiness Penalties
Abstract
In this study, the due-window assignment single-machine scheduling problem with resource allocation is considered, where the processing time of a job is controllable as a linear or convex function of amount of resource allocated to the job. Under common due-window and slack due-window assignments, our goal is to determine the optimal sequence of all jobs, the due-window start time, due-window size, and optimal resource allocation such that a sum of the scheduling cost (including weighted earliness/tardiness penalty, weighted number of early and tardy job, weighted due-window start time, and due-window size) and resource consumption cost is minimized. We analyze the optimality properties, and provide polynomial time solutions to solve the problem under four versions of due-window assignment and resource allocation function.