World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

WHY IS THE HIDDEN SECTOR INVISIBLE?

    https://doi.org/10.1142/S0217732300002796Cited by:3 (Source: Crossref)

    The hidden sector of the E8×E′8 heterotic superstring theory of Gross et al. can in principle contain additional "shadow" matter, interacting only gravitationally with the real world in which we live. The SU(3)′C×SU(2)′L×U(1)′Y shadow configuration symmetric to the standard model has been ruled out by Kolb et al. from nucleosynthesis arguments, combined with the existence of three light neutrinos. In the absence of inflation and of entropy enhancement by the out-of-equilibrium decay of an unstable particle, the same exclusion applies to the unbroken E′8 hidden gauge group, assuming thermodynamical equilibrium with the observable sector E6 group, and consequently all breaking chains E′8→ G1×G2×⋯, since they can only reduce the effective number of four-dimensional degrees of freedom geff. The hidden sector would then appear to be in its vacuum state, which implies the absence of all condensates as well, if their potentials are positive semi-definite. In this case, and if there is no anomalous U(1) symmetry in the observable sector, the QCD axion is the model-independent axion, whose decay constant (where is the strong-interaction coupling parameter) requires a fine-tuning of the initial value of this axion field to ai/fa≲3×10-3, in order not to overclose the Universe today, supersymmetry being broken by gauge mediation. Vice versa, if ai/fa~1, then hidden-sector gaugino condensation is necessary for there to be a sufficiently massive gravitino, whose decay can increase the entropy. Astronomical microlensing observations may help to discriminate between these two cases.