GENERALIZED STRONG CURVATURE SINGULARITIES AND COSMIC CENSORSHIP
Abstract
A new definition of a strong curvature singularity is proposed. This definition is motivated by the definitions given by Tipler and Królak, but is significantly different and more general. All causal geodesics terminating at these new singularities, which we call generalized strong curvature singularities, are classified into three possible types; the classification is based on certain relations between the causal structure and the curvature strength of the singularities. A cosmic censorship theorem is formulated and proved which shows that only one class of generalized strong curvature singularities, corresponding to a single type of geodesics according to our classification, can be naked. Implications of this result for the cosmic censorship hypothesis are indicated.