TIME VARIATION OF FINE STRUCTURE CONSTANT AND PROTON-ELECTRON MASS RATIO WITH QUINTESSENCE
Abstract
Recent astrophysical observations of quasar absorption systems indicate that the fine structure constant α and the proton-electron mass ratio μ may have evolved through the history of the universe. Motivated by these observations, we consider the cosmological evolution of a quintessence-like scalar field ϕ coupled to gauge fields and matter which leads to effective modifications of the coupling constants and particle masses over time. We show that a class of models where the scalar field potential V(ϕ) and the couplings to matter B(ϕ) admit common extremum in ϕ naturally explains constraints on variations of both the fine structure constant and the proton-electron mass ratio.