World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHRONOMETRIC INVARIANCE AND STRING THEORY

    https://doi.org/10.1142/S0217732308026820Cited by:5 (Source: Crossref)

    The Einstein–Hilbert Lagrangian R is expressed in terms of the chronometrically invariant quantities introduced by Zel'manov for an arbitrary four-dimensional metric gij. The chronometrically invariant three-space is the physical space γαβ = -gαβ+e γαγβ, where e = g00 and γα = g/g00, and whose determinant is h. The momentum canonically conjugate to γαβ is , where and ∂te0 is the chronometrically invariant derivative with respect to time. The Wheeler–DeWitt equation for the wave function Ψ is derived. For a stationary space-time, such as the Kerr metric, παβ vanishes, implying that there is then no dynamics. The most symmetric, chronometrically-invariant space, obtained after setting ϕ = γα = 0, is , where δαβ is constant and has curvature k. From the Friedmann and Raychaudhuri equations, we find that λ is constant only if k=1 and the source is a perfect fluid of energy-density ρ and pressure p=(γ-1)ρ, with adiabatic index γ=2/3, which is the value for a random ensemble of strings, thus yielding a three-dimensional de Sitter space embedded in four-dimensional space-time. Furthermore, Ψ is only invariant under the time-reversal operator if γ=2/(2n-1), where n is a positive integer, the first two values n=1,2 defining the high-temperature and low-temperature limits ρ ~ T±2, respectively, of the heterotic superstring theory, which are thus dual to one another in the sense T↔1/2π2α′T.

    PACS: 02.40.-k, 04.50.+h, 04.60.Kz, 05.70.-a, 64.30.+t