World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CONFINING TIME-LIKE GLUON AND CONFINED SPATIAL GLUONS IN COULOMB GAUGE QCD

    https://doi.org/10.1142/S0217732308029368Cited by:1 (Source: Crossref)

    We investigate the Gribov-Zwanziger scenario in Coulomb gauge QCD using a SU(3) quenched lattice gauge simulation. The ghost propagator diverges in the infrared limit stronger than the free ghost propagator, and the ghost degree of freedom plays a central role in the confinement mechanism in the Coulomb gauge. The infrared divergent ghost dressing function results in the confining color-Coulomb instantaneous interaction. The equal-time transverse gluon propagator is suppressed in the infrared region. Therefore, in the Coulomb gauge, the instantaneous interaction mediated by time-like gluons is responsible for the confining force, and the would-be physical gluons are confined in hadrons.

    PACS: 12.38.Aw, 12.38.Gc, 11.15.Ha