World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

APPROXIMATE ANALYTICAL SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH THE MANNING–ROSEN POTENTIAL MODEL

    https://doi.org/10.1142/S0217732309030345Cited by:33 (Source: Crossref)

    By approximating the centrifugal term in terms of a new approximation scheme, we solve the Schrödinger equation with the arbitrary angular momentum for the Manning–Rosen potential. The bound state energy eigenvalues and the unnormalized radial wave functions have been approximately obtained by using the supersymmetric shape invariance approach and the function analysis method. The numerical experiments show that our approximate analytical results are in better agreement with those obtained by using the numerical integration procedure than the analytical results obtained by using the conventional approximation scheme to deal with the centrifugal term.

    PACS: 03.65.Ge, 34.20.Cf