HIGHER-ORDER SUSY, EXACTLY SOLVABLE POTENTIALS, AND EXCEPTIONAL ORTHOGONAL POLYNOMIALS
Abstract
Exactly solvable rationally-extended radial oscillator potentials, whose wave functions can be expressed in terms of Laguerre-type exceptional orthogonal polynomials, are constructed in the framework of kth-order supersymmetric quantum mechanics, with special emphasis on k = 2. It is shown that for μ = 1, 2, and 3, there exist exactly μ distinct potentials of μth type and associated families of exceptional orthogonal polynomials, where μ denotes the degree of the polynomial gμ arising in the denominator of the potentials.