World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HIGHER-ORDER SUSY, EXACTLY SOLVABLE POTENTIALS, AND EXCEPTIONAL ORTHOGONAL POLYNOMIALS

    https://doi.org/10.1142/S0217732311036383Cited by:58 (Source: Crossref)

    Exactly solvable rationally-extended radial oscillator potentials, whose wave functions can be expressed in terms of Laguerre-type exceptional orthogonal polynomials, are constructed in the framework of kth-order supersymmetric quantum mechanics, with special emphasis on k = 2. It is shown that for μ = 1, 2, and 3, there exist exactly μ distinct potentials of μth type and associated families of exceptional orthogonal polynomials, where μ denotes the degree of the polynomial gμ arising in the denominator of the potentials.

    PACS: 03.65.Fd, 03.65.Ge