World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0217732317501486Cited by:2 (Source: Crossref)

A modification of inertia (called MiHsC or quantized inertia) has been proposed that assumes that inertia is caused by Unruh radiation, and that this radiation is made inhomogeneous in space by either Rindler horizons caused by acceleration or the distant Hubble horizon. The former predicts the standard inertial mass, and the latter predicts galaxy rotation without dark matter and cosmic acceleration without dark energy. It is proposed here that this model can be derived in an alternative way by assuming that the sum of mass (M), energy (E) and the information content of horizons (I) is conserved (EMI) so that mass–energy is released in a discrete manner when the area of a Rindler horizon reduces. This model could be tested by looking for the quantization of inertial mass and acceleration at very high accelerations, and may provide an explanation for the cosmological constant problem.

PACS: 04.62.+v, 98.80.Qc