World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Gravitational acceleration of a weakly relativistic electron in a conducting drift tube

    https://doi.org/10.1142/S0217732318501924Cited by:3 (Source: Crossref)

    We propose the idea of method for observing the effect of the Earth’s gravitational field on the motion of an electron. Earlier attempts to measure such an effect proved unsuccessful due to the fact that under the conductive sheath, the gravitational force acting on the non-relativistic electron is completely compensated by Barnhill–Schiff force. Therefore, experiments of this kind were unable to measure the effect of the Earth’s gravitational field on the motion of electrons. In this paper, we propose to use electrons moving with relativistic speeds in the horizontal plane, and with non-relativistic speeds in the vertical direction, in which case the gravitational force on these electrons is not fully compensated by the Barnhill–Schiff force. Calculations showed that in this case, it is possible to measure the force exerted on an electron by the gravitational field of the Earth.

    PACS: 12.90.+b, 14.60.Cd