Noncommutative coupled complex modified Korteweg–de Vries equation: Darboux and binary Darboux transformations
Abstract
Higher-order nonlinear evolution equations are important for describing the wave propagation of second- and higher-order number of fields in optical fiber systems with higher-order effects. One of these equations is the coupled complex modified Korteweg–de Vries (ccmKdV) equation. In this paper, we study noncommutative (nc) generalization of ccmKdV equation. We present Darboux and binary Darboux transformations (DTs) for the nc-ccmKdV equation and then construct its Quasi-Grammian solutions. Further, single and double-hump soliton solutions of first- and second-order are given in commutative settings.