World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Noncommutative coupled complex modified Korteweg–de Vries equation: Darboux and binary Darboux transformations

    https://doi.org/10.1142/S0217732319500548Cited by:8 (Source: Crossref)

    Higher-order nonlinear evolution equations are important for describing the wave propagation of second- and higher-order number of fields in optical fiber systems with higher-order effects. One of these equations is the coupled complex modified Korteweg–de Vries (ccmKdV) equation. In this paper, we study noncommutative (nc) generalization of ccmKdV equation. We present Darboux and binary Darboux transformations (DTs) for the nc-ccmKdV equation and then construct its Quasi-Grammian solutions. Further, single and double-hump soliton solutions of first- and second-order are given in commutative settings.

    PACS: 11.10.Nx, 02.30.Ik