World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Sensitivity of Casimir oscillators on geometry and optical properties

    https://doi.org/10.1142/S0217732320400039Cited by:2 (Source: Crossref)
    This article is part of the issue:

    The dependence of the Casimir force on the optical properties and geometry of interacting materials makes possible to tailor the actuation dynamics of micro/nano actuators. In this research, we study the dynamical sensitivity of micro- and nanoelectromechanical systems on geometry by comparing the plate-plate and sphere-plate configurations, and taking into account the optical properties of the interacting materials. In fact, for conservative systems bifurcation analysis and phase portraits show that the geometry and the optical properties strongly influence the stability of an actuating device in a way that geometries that lead to weaker Casimir forces (sphere-plate geometry) favor more stable behavior. In addition, for non-conservative periodically driven systems, the Melnikov and Poincare portrait analysis shows that stronger Casimir forces lead to increased chaotic behavior, which more pronounced for the plate-plate geometry, that prohibits the long term prediction of the actuating dynamics of the system.

    PACS: 12.20.Ds, 78.20.-e, 78.20.Ci