World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Thermodynamics and statistical physics of quasiparticles within the quark–gluon plasma model

    https://doi.org/10.1142/S0217732320501941Cited by:2 (Source: Crossref)

    We consider thermodynamic properties of a quark–gluon plasma related to quasiparticles having the internal structure. For this purpose, we employ a possible analogy between quantum chromodynamics and non-Abelian Proca-Dirac-Higgs theory. The influence of characteristic sizes of the quasiparticles on such thermodynamic properties of the quark–gluon plasma like the internal energy and pressure is studied. Sizes of the quasiparticles are taken into account in the spirit of the van der Waals equation but we take into consideration that the quasiparticles have different sizes, and the average value of these sizes depends on temperature. It is shown that this results in a change in the internal energy and pressure of the quark–gluon plasma. Also, we show that, when the temperature increases, the average value of characteristic sizes of the quasiparticles increases as well. This leads to the occurrence of a phase transition at the temperature at which the volume occupied by the quasiparticles is compared with the volume occupied by the plasma.

    PACS: 12.38.Mh, 11.15.Tk, 12.38.Lg, 11.27.+d